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Abstract—Despite producing tremendous success stories by
identifying cat videos [1] or solving computer as well as board
games [2], [3], the adoption of deep learning in the semiconductor
industry is moderatre. In this paper, we apply Google DeepMind’s
Deep Q Network (DQN) agent algorithm for Reinforcement
Learning (RL) to semiconductor production scheduling. In an RL
environment several cooperative DQN agents, which utilize deep
neural networks, are trained with flexible user-defined objectives.
We show benchmarks comparing standard dispatching heuristics
with the DQN agents in an abstract frontend-of-line semiconduc-
tor production facility. Results are promising and show that DQN
agents optimize production autonomously for different targets.

Index Terms—Production Scheduling, Reinforcement Learn-
ing, Machine Learning, Semiconductor Manufacturing

I. INTRODUCTION

The three traditional efficiency improvement methods in
semiconductor manufacturing (miniaturization, yield improve-
ment and larger wafer sizes) are close to be fully exploited. At
the same time, the Internet of Things requires a broad range of
customized chips in smaller production quantities, e.g. sensors,
which do not benefit from Moore’s law. The key to meet cost
reduction targets is operational excellence. In this context, we
present a new method for production control which satisfies
new requirements due to large portfolios with small quantities
of each product. This mode of operation differs tremendously
compared to traditional portfolios dominated by large volume
logic and memory chips.

For small volumes at workcenters production scheduling in
flexible job shops can be solved optimally with mathematical
optimization. For larger, dynamic environments the model
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complexity and run-time limit the application of mathematical
optimization to the Job-Shop Scheduling Problem (JSP), which
is Non-deterministic Polynomial-time (NP) hard. As a result,
optimization is used locally and separated at workcenters. In
complex job shops, local optimization of production schedul-
ing can result in non-optimal global solutions for production.

A new method to increase performance in production con-
trol is the use of new technologies like machine learning.
Deep Learning has made tremendous progress in the last years
and produced various success stories [1], [2], [3], [4]. Still,
there are very few serious applications in the semiconductor
manufacturing industry.

In this paper we apply deep Reinforcement Learning (RL)
to production scheduling in complex job shops utilizing co-
operative Deep Q Network (DQN) agents [2]. The DQN
agents, which use deep neural networks for decision making,
are trained in a RL environment with user-defined flexible
objectives to optimize production scheduling. The rules at
one workcenter are optimized by one agent while optimizing
a global reward and monitoring the actions of other agents.
In the simulation the rules are directly tested and improved.
During a pre-training phase with e.g. data from legacy systems,
the DQN system captures existing dispatching strategies such
as heuristics in neural networks. Of course, completely new
solutions can also be trained in the simulation environment.
With this application of deep RL, we achieve the Industrie 4.0
vision for production control of a decentralized, self-learning,
self-organizing and self-optimizing system. The approach has
several advantages:

• Global transparency: The composition of different hi-
erarchical dispatching heuristics at workcenters is based
on human experience. It works in a strictly discrete
space/hierarchy and balancing of goals is only possible
in a hierarchical way. The DQN agents work in a con-
tinuous space where they ensure that the right balance of
objectives is met.



• Continuity: The DQN agents can be pre-trained from
different, existing dispatching systems. Errors in existing
dispatching systems are revealed. Legacy systems in
production can be modernized and unified easily.

• Flexibility: Agents can be retrained and deployed within
hours for different portfolios and changes in the optimiza-
tion objectives (e.g. time-to-market vs. utilization) or in
the machine park.

• Global optimization: Breaking down and balancing
global goals to local Key Performance Indicators (KPIs)
is challenging in complex job shop environments. The
DQN agent system automatically optimizes globally in-
stead of locally. It is not necessary to break down
production objectives manually.

• Automation: Dispatching rules do not have to be imple-
mented by human experts.

Despite all advantages, there are currently two disadvan-
tages: First, training is computationally expensive. Second, as
neural networks are black box models, it is hard to predict
how the DQN agents act in unknown situations.

One of the first successful applications of RL and a neural
network to a static job shop scheduling was published by
Zhang and Dietterich [5], [6]. Mahadevan and Theocharous
optimize the maintenance schedule of one machine with RL
[7] and subsequently extended their model to a transfer line
[8]. Bradtke and Duff solved the routing to two heterogeneous
servers in order to minimize queue length with RL [9]. One
agent is trained to adopt the dispatching policy of one machine
in a three-resource scenario in [10]. Paternina-Arboleda and
Das implement dynamic scheduling of multiple products at a
single server [11]. A multi-agent learning approach for multi-
machine scheduling is used by Brauer and Weiss, but without
RL and neural networks [12]. Another approach utilizes neural
networks and RL to optimize one resource center without
constraints [13]. Recently, multi-agent RL was implemented
with multiple machine types and Q-learning [14].

Since these publications, deep learning has made immense
progress [15]. Promising results have been achieved with deep
RL for resource management such as computing or memory
resources [16], [17]. We apply a recent algorithm (DQN agent)
in a multi-agent setting to a dynamic, complex job shop
consisting of workcenters with different constraints, multiple
machines of different types and multiple products.

In Section II the basics of job shop scheduling are de-
fined. Section III presents the deep RL system for production
scheduling. In Section IV, the factory environment used for
validation is described and characterized. The method and test
bed will be published in [18] in detail. Results on delivery
reliability are presented for the first time. Discussion and
conclusion follow in Sections V and VI.

II. PROBLEM STATEMENT: COMPLEX JOB SHOP
PRODUCTION AND SCHEDULING

We apply machine learning to a production environment
which is considered complex and dynamic. A job shop is an el-
ementary type of manufacturing, where similar production de-

vices form closed units. Different products p in the production
portfolio take different routes rp, which consist of a number
of N ordered Single Process Steps (SPSp,1, . . . , SPSp,N ). The
loading lp, which gives the number of jobs of product p started
in production per week, determines the production quantity.
Each SPS is handled on a specific resource in a resource pool
of M resources for a certain duration. The dedication matrix
d determines the possible allocation of jobs to machines:

d(p,n),m =

{
1 if machine m can process SPSp,n
0 if machine m can not process SPSp,n.

(1)

In a flexible job shop processes can be handled by several
equipment, which is achieved by similar tools working in
parallel. Several conditions and constraints have to apply to
characterize a job shop as complex:

• Technological constraints: Sequence-dependent setup
times, varying process times, time coupling, different
types of processes (e.g. single jobs vs. batch processing).

• Logistic constraints: Re-entrant flows of the jobs, dif-
ferent lot sizes, prescribed due dates of the jobs, varying
availability of tools (e.g. machine breakdowns).

• Production quantity: In a mass production emergent
phenomena become visible as a result of interacting jobs
(e.g. Work In Progress (WIP) waves).

Dispatching and scheduling control the performance of
a complex job shop as a manufacturing system concerning
logistic and economic KPIs [19]. Scheduling refers to the
static planning process of allocating waiting lots to available
resources [20]. Most research was done on the static prob-
lem, while real-world environments have continuous ongoing
processes with constantly updated real-time information [19].
Dispatching (or dynamic scheduling) refers to the real-time
decision upon the next job at a specific machine in a complex,
dynamic environment [19], [20]. Schedules are determined
mostly by linear optimization or genetic programming; heuris-
tics are the most common method for dispatching (details for
dispatching heuristics see [20]).

III. METHODS: APPLICATION OF RL TO PRODUCTION
SCHEDULING

A. Production Scheduling as Markov Decision Process

The foundation for RL is an environment in which an
agent can take actions and observe the results. The factory
simulation, which serves as environment, runs as Discrete-
Event Simulation (DES), where events occur in an ordered
sequence and mark changes in the system. Two types of events
are distinguished: Events which do not require scheduling
are handled internally, while the remaining events require the
dispatching decision as external input. In the following, only
dispatching events are considered. Thereby, a new discretiza-
tion of scheduling time steps t is introduced. The state of the
system st ∈ S at time t, where S is the space of all possible
states, is given to a dispatching system as input. This system
provides an action at ∈ A, where A is the space of all possible
actions available to the system. The event types which require



scheduling are ARRIVAL of a new lot and MOVEOUT of a lot
from a machine.

For RL, states and actions need to fulfill the requirements
of a Markov Decision Process (MDP). The Markov property
in RL is equivalent to the requirement that all relevant infor-
mation for the decision is contained in the state vector st (for
complete definition of MDP see [21, p. 57]).

The state space S = Smachines × Sjobs is a combination of
machine states smachine = 〈s1, . . . , sMw

〉 ∈ Smachines for Mw

machines at a workcenter w and the state of surrounding jobs
sjobs = 〈s1, . . . , sj〉 ∈ Sjobs for j jobs. The machine space is
defined by machine availability (breakdowns), capabilities and
the setup. Machine capabilities are encoded in the dedication
matrix d (see Section II). Availability av is a binary property,
av ∈ {0, 1}Mw . In this example, the equipment at one
workcenter is identical and breakdowns are not explicitly
considered. This leaves the setup, which is encoded for the
workcenter specific agent: The machine state sx reduces to a
one-hot vector sx ∈ {0, 1}ST for ST setup types.

The second part of the state space consists of the properties
of the jobs sj . First, it comprises the product type, which is a
one-hot vector {0, 1}p. Then, the normalized deviation of a set
due date for the current operation is given. Last, the location
is encoded as one-hot vector {0, 1}locations.

The action space consists of (pos+1) actions: the lots at pos
possible positions and one option to start no lot. Before each
call of a DQN agent lot positions are shuffled to randomize
the samples in the training set.

B. Supervised and RL in a factory simulation

The default scheduling and dispatching logic is described
in Section IV and implemented in an event handler called
Job Shop Management (JSM). The JSM is based on expert
knowledge and is the benchmark for factory performance. It
provides the state-action pairs (st, at) for supervised learning
(see Fig. 1). The neural network predicts the action at based
on the state st. Thereby, existing dispatching strategies are
captured by observation of existing solutions.

Still, it is not possible to improve on the existing systems
with supervised learning. During RL, the DQN agents interact
directly with the factory simulation. The DQN agents receive
rewards, in this case a factory KPI, and correlates actions
at with rewards. The agent determines its actions by using
a neural network or by choosing an explorative action to
discover new strategies. Essentially, the agent trains the neural
network in such a way that it predicts the cumulative, weighted
rewards for all actions. The relationship between agent, neural
network, JSM and simulation is shown in Fig. 1.

The DQN agents are based on Q-learning, which is used to
adapt the action-selection policy πt(a|s) so that it maximizes
the reward. The policy πt(a|s) is the probability distribution
that at = a if st = s [21]. The Q-function Q : S × A → R
expresses the reward over successive steps weighted by the
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Fig. 1. Relationship and data exchange between factory simulation as discrete
event simulation, job shop management with standard dispatching heuristics
and the DQN agent with neural networks.

discount factor γ. The optimal action-value function Q∗(s, a)
is approximated during the Q-learning algorithm: [2]

Q∗(s, a) = max
π

E

[∑
t

rt · γt |st = s, at = a, π

]
. (2)

The function Q∗(s, a) is the maximum of the sum of rewards
discounted by γ per time-step t that can be achieved with
the policy π. The DQN algorithm uses the neural network
as a representation of π and also to predict the Q values for
actions.

In our experiments, we experienced difficulties in capturing
different dispatching strategies at different workcenters with
different resources and constraints in one neural network.
Additionally, one agent with a separate neural network for
each workcenter improves scalability and stability. The agents
are trained separately, but use the neural networks of the
other agents for the remaining workcenters. This stabilizes the
first learning phase. While all neural networks are controlling
the simulation, only one agent is actively training its neural
network. The learning agent considers the actions of the other
agents by observing their activity. As all agents optimize a
global reward they act cooperatively. The cooperative learning
of different agents is presented in the upper part of Fig. 2.

The training of the DQN agents is separated into two phases:

• Phase A: While one DQN agent is trained, the other
workcenters are controlled by heuristics. Each DQN agent
is trained once.

• Phase B: All workcenters are controlled by DQN agents,
which are learning separately. The DQN agents are
trained in cycles, each time for a relatively short period.

The separation speeds up training for two reasons: First,
the factory performance is stabilized if only one workcenter is
controlled by an agent. Second, the heuristics at the remaining
workcenters have a faster execution time than neural networks.
Still, training can be started directly in phase B.

As DQN agents are model-free, they start without any
knowledge about the system (if no prior supervised learning
was done). A linear annealed ε-greedy policy controls the share
of explorative actions the agent takes in different phases.
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Fig. 2. Complete setup of the DQN agent based production control. The
training phase in the upper part shows the sequential training algorithm for
multi-agent systems. The deployment layer at the bottom demonstrates the
fast transferability and applicability in the factory and the synchronization
with the digital twin.

In a separate deployment phase, the performance is deter-
mined without changes due to the learning process and random
actions due to the ε-greedy policy. The whole training and
learning process is presented in Fig. 3.

C. Implementation and Application

The MATLAB factory simulation is made accessible via
the MATLAB API for Python and an Python OpenAI Gym
Interface [22], with which standardized agents can observe and
control the environment. For the RL framework keras-rl [23]
is used, which builds on keras [24]. The TensorFlow backend
is used in Keras. In keras-rl, the implementation of Google
DeepMind’s DQN agent is used [2].

For an application in a factory, the performance of the
system depends on the quality of the simulation model. A
digital twin of the production offers the best way to let the
RL algorithm interact with the production. If simulation and
reality have significant deviations, the DQN-agents can keep
learning after deployment in production to account for and
adapt to differences.

During training of the algorithm, the solutions are not
optimal. Furthermore, the training is computationally expen-
sive and not running in real-time. Therefore the training of
the algorithms runs offline in a simulation. When optimal
solutions are found, the essence is captured in the neural
networks. Next, the neural networks are transferred to the
online environment. The neural networks can be updated when
objectives, production resources, portfolios or logistics in the
digital twin change.

IV. CHARACTERIZATION OF THE FACTORY SIMULATION

Semiconductor wafer processing is characterized as com-
plex job shop production. The testbed factory is modeled

TABLE I
SETUP TIMES FROM ONE TECHNOLOGY CLASS TO ANOTHER.

[arbitrary time units] TC 1 TC 2 TC 3

TC 1 0.00 0.11 0.19
TC 2 0.41 0.00 0.32
TC 3 0.13 0.30 0.00

after an abstracted frontend-of-line production with four work-
centers, where transistors are formed on the wafer. The first
workcenter is equipped with two lithography clusters, but only
one reticle set for each product. In workcenter 2 the implanter
requires different setups for different processes with stetup
times shown in Table I. The next processing steps are merged
in the testbed and modeled as a buffer with an infinite capacity
but transport batching. In the last workcenter, 3 furnaces
process batches of two identical lots.

Three different Technology Classes (TCs) are running in
the simulation, on which different products can be realized.
The Raw Process Times (RPTs) are given in Fig. 4. All RPTs
follow a normal distribution with a coefficient of variance of
50%, which also models delays at machines. The implanter
requires a different setup for each TC. Each lot re-enters the
line for a fixed number of cycles creating a re-entrant flow.
Transport-times and machine breakdowns are not considered
explicitly.

Each workcenter is controlled by different dispatching
heuristics which are typical for semiconductor manufacturing.
At workcenter 1 Operations Due Date (ODD) with a plan
Flow Factor (FF) is applied (also called X-factor; FF=Cycle
Time (CT)/(

∑
RPT)). If ODD is ambiguous, First-In-First-

Out (FIFO) is applied for lots with identical due dates. At
workcenter 2, the setup optimization increases the throughput.
For lots with identical setup, FIFO is used. Workcenter 3 acts
as a buffer. At workcenter 4 the batch with the lot with the
largest due date deviation is started. Single lots are not started.

The WIP level is kept constant at 48 lots by controlling
the loading of the simulation in order to achieve a realistic,
measured FF of 2.8. Small variations in the WIP level are
created by a random period of 0–18 hrs between closing of a
lot and loading of the next. The uptime utilization is 95%.

V. EXPERIMENT, RESULTS AND DISCUSSION

The standard dispatching heuristics mix the optimization
objectives of uptime utilization and delivery performance. The
uptime utilization leads to a high throughput, but also higher
deviations in the delivery performance and a high Cycle Time
Spread (CTS). CTS is the distribution of CTs for one TC.
In this experiment, the DQN agent dispatching system is
rewarded for delivery performance. While CT might increase,
we expect the CTS to decrease (and therefore the delivery
reliability to increase).

The plan FF is set to 2.8. Critical are lots which surpass
their planned CT by 10% (lots with FF= 3.1), as they are
seriously delayed.
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The reward in phase A is considered to be a pre-training: It
is the negative, normalized due date deviation of the chosen
lot. Therefore the DQN agents are incentivized to choose the
lot whose projected delivery date differs the most from the
planned. In the second phase B, the global optimization starts:
The reward is the total sum of the due date deviations of all
lots in the line. For actions which are not possible to execute,
e.g., when a reticle is already in use, a penalty of −1 is given.
In deployment mode the penalties are set to zero.

The neural networks of each DQN agent have the same
topology with three densely connected layers of 512, 128 and
21 neurons. The last layer corresponds to the actions. Rectified
Linear Units (ReLU) are used as activation functions. Adam
[25] is used as optimizer for training with a learning rate of
lr = 10−4 in phase A and lr = 10−6 in phase B. The batch
size bs is set to bs = 32 in phase A and bs = 8 in phase
B. A decaying ε-greedy policy is used in phase A (shown in
Fig. 5a); a constant ε-greedy policy of 0.2 is used in phase
B. During deployment the best action is always selected. The
target model update tmu of the DQN agent is set to tmu =
10−2. The discount factor in Q-learning is γ = 0.1 in phase

TABLE II
COMPARISON OF KEY PARAMETERS OF A FACTORY CONTROLLED BY

DISPATCHING HEURISTICS OR DQN AGENT OPTIMIZATION IN
DEPLOYMENT MODE AVERAGING OVER 105 LOTS PRODUCED WITH THE

RESPECTIVE CONTROL METHOD.

TC 1 TC 2 TC 3

Dispatching
Heuristics

mean CT 1133.5 1600.1 838.0

σ(CT) 118.2 138.9 102.5

ratio lots w/ FF> 3.1 17.0% 1.7% 13.9%

DQN agents
mean CT 1118.2 1729.5 840.5

σ(CT) 56.3 60.9 54.5

ratio lots w/ FF> 3.1 1.3% 1.2% 1.9%

A and γ = 0.9 in phase B. Reference for the parameters is
the publication of the DQN agent algorithm [2].

The key parameters of the learning process are shown in
Fig. 5. In phase A a good pre-training is achieved: loss
(Fig. 5a) and mean Q (Fig. 5b) functions are quickly con-
verging. The mean Q (= meant(E(maxa(Q(a, t)))) value is
converging towards Q∗ (see Eq. 2). In phase A / Fig. 5b the
reward is quickly rising.

The performance of each dispatching system is evaluated in
deployment mode and results are shown in Table II and Fig. 6.
While the mean CT for TC 1 and TC 3 is nearly identical for
both systems, the DQN agent system leads to an increase of
the mean CT for TC 2 of 8%. Still, the optimization meets its
objective: The standard deviation of CT / CTS is decreased by
50% for all TCs. The ratio of lots with serious delay (FF> 3.1)
is decreased tremendously. The share of delayed lots in TC 1 is
reduced from 17.0% to 1.3% and in TC 3 from 13.9% to 1.9%.
With the standard dispatching heuristics the ratio of delayed
lots for TC 2 is rather low. Interestingly, this share is only
slightly increased, but the CT for TC 2 is increased. The gained
flexibility is used to significantly increase the performance of
TC 1 and 3. This shift is pronounced in the histogram Fig. 5.

With regards to the rapid developments in machine learning
we expect the model to be able to scale to larger simulations.
The factory size for which optimization is still possible is
limited by the available processing power.
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VI. SUMMARY AND CONCLUSION

In this paper, RL with the DQN agent was successfully
applied to production scheduling. The system automatically
develops global optimal scheduling solutions without human
intervention or any prior expert knowledge. It can be trained
and exchanged within hours. The system adopts to the set
objectives. In this case, the share of delayed lots could be
reduced significantly, in TC 1 from 17% to 1.3%.

In future work, optimization under several balanced objec-
tives will be presented. The impact of parameters in the RL
process, e.g., size of the neural network, can be investigated.
The methodology will be applied to different factory envi-
ronments, where the performance in different settings and the
scaling of the method can be investigated.
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